The correct option is D There exists at least one c∈(0,2π) such that f′(c)=0
Here f(x)=14π∫02cost⋅cos(x−t)dx
=14π∫0[cost(t+x−t)+cos{t−(x−t)}]dt
=cosx4[t]π0+14π∫0cos(2t−x)dt
=πcosx4+14⋅[sin(2t−x)2]π0
=πcosx4+18[sin(2π−x)−sin(0−x)]
=πcosx4+18(−sinx+sinx)
∴f(x)=πcosx4 Which is clearly continuous and differentiable is (0,2π)
∴f′(x)=−π4sinx
f′′(x)=−π4cosx
When f′(x)=0⇒−π4sinx=0
⇒sinx=0
⇒x=0,π,2π
At x=0,2π,f′′(x)=−π4×1<0
∴x=0,2π are the points of local maxima
and at x=π,f′′(x)=−π4×(−1)>0
∴x=π is the point of local minima
At x=π,f′(x)=−π4sinπ=0
⇒∃ atleast one c=π∈(0,2π) such that f′(c)=0 and maximum value of f(x)=π4cosπ=−π4
Max.f(x)=π4at(x=0,2π)