Since, f:R→R is an onto mapping.
∴ Range of f=R
⇒ αx2+6x−8α+6x−8x2 assumes all real values of x.
Let y=αx2+6x−8α+6x−8x2
Then, y assumes all real values for real values of x.
⇒ αy+6xy−8x2y=αx2+6x−8, ∀yϵR
⇒ x2(α+8y)+6x(1−y)−(8+αy)=0, ∀yϵR
we know, above equation assumes all real values
⇒ D≥0
So, 36(1−y)2+4(α+8y)(8+αy)≥0
⇒ 4[9(1−2y+y2)+(8α+α2y+64y+8αy2)]≥0
⇒ [9−18y+9y2+8α+α2y+64y+8αy2]≥0
⇒ [y2(8α+9)+y(α2+46)+(8α+9)]≥0
We know, if ax2+bx+c>0∀x and a> 0⇒D< 0
So, (α2+46)2−4(8α+9)(8α+9)≤0 and (8α+9)>0
⇒ (α2+46)2−[2(8α+9)]2≤0 and α>−9/8
⇒ (α2+46−16α−18)(α2+46+16α+18)≤0 and α>−9/8
(α2−16α+28)(α2+16α+64)≤0 and α>−9/8
⇒ (α−14)(α−2)(α+8)2≤0 and α>−9/8
αϵ[2,14]∪{−8} and α>−9/8
Thus, αϵ[2,14]