wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A function RR is defined by f(x)=αx2+6x8α+6x8x2. If f is an onto function for α[P,Q] then P+Q is

Open in App
Solution

Since, f:RR is an onto mapping.
Range of f=R
αx2+6x8α+6x8x2 assumes all real values of x.
Let y=αx2+6x8α+6x8x2
Then, y assumes all real values for real values of x.
αy+6xy8x2y=αx2+6x8, yϵR
x2(α+8y)+6x(1y)(8+αy)=0, yϵR
we know, above equation assumes all real values
D0
So, 36(1y)2+4(α+8y)(8+αy)0
4[9(12y+y2)+(8α+α2y+64y+8αy2)]0
[918y+9y2+8α+α2y+64y+8αy2]0
[y2(8α+9)+y(α2+46)+(8α+9)]0
We know, if ax2+bx+c>0x and a> 0D< 0
So, (α2+46)24(8α+9)(8α+9)0 and (8α+9)>0
(α2+46)2[2(8α+9)]20 and α>9/8
(α2+4616α18)(α2+46+16α+18)0 and α>9/8
(α216α+28)(α2+16α+64)0 and α>9/8
(α14)(α2)(α+8)20 and α>9/8
αϵ[2,14]{8} and α>9/8
Thus, αϵ[2,14]

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relation of Roots and Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon