The correct option is A f(x)=12+∑∞n=12nπsin(nπ2)cosnx
f(x)={1,−π2≤×≤π20,otherwise
It is given that T = 2π
so, a0=1π∫π−πf(x)dx
=1π∫π/2−π/2(1)dx=1
an=1π∫π−πf(x)cosnxdx
=2xπsinnπ2
bn=1π∫π−πf(x)sinnxdx=0
(∴ integrand is an odd function)
So, Fourier series representation is
f(x)=a02+∑∞n=1ancosnx+∑∞n=1bnsinnx
=12+∑∞n=12nπsin(nπ2)cosnx