The correct option is C Increasing in (0,1)
dydx can be calculated as dydx=dydtdxdt
Now, dydt =−1+3t2t2(1+t2)2
Similarly dxdt =−2t(1+t2)2
Hence, =dydx =1+3t22t3
>0 for it to be an increasing function.
1+3t2>0
No real value.
Thus f(x)>0 for t≥0.
This implies xϵ(0,1).