x=Φ(t)=t5−5t3−20t+7
∴˙x=5t4−15t2−20=5(t4−3t2−4)=5(t2−4)(t2+1)
Clearly ˙x≠0 when −2<t<2 ...(1)
y=Ψ(t)=4t3−3t2−18t+3
˙y=12t2−6t−18=6(2t2−t−3)=6(2t−3)(t+1)
∴˙y=0 gives t=−1,3/2
Both these values satisfy the condition
−2<t<2 ...(2)
Now dydx=˙y˙x=0(x≠0)
∴˙y=0∴t=−1,3/2 by (1) and (2)
∴d2ydx2=ddx(˙y˙x)=ddt(˙y˙x)dtdx
=˙x¨y−˙y¨x˙x2.1˙x=˙x¨y˙x2.1˙x
∵y=0 and x≠0
⇒d2ydx2=¨y˙x2=6(4t−1)˙x2<0 at t=−1 and >0 at t=3/2
Hence y is max. at t=−1( i.e. y=14,x=31) and is minimum at t=3/2
(i.e.,y=−1714,x=−103332).