A function y=f(x) satisfies the condition f′(x)sinx+f(x)cosx=1,f(x) being bounded when x→0. if I=∫π20f(x)dx, then
π2<I<π24
sinxdydx+ycosx=1
dydx+ycotx=cosecx
IF=e∫cotxdx=eln(sinx)=sinxy sinx=∫cosecx sinx dx=x+cIfx=0,y is finite∴ c=0
y=x(cosecx)=xsinx
Now I<π24 and I>π2
Hence π2<I<π24