Given, xdydx−2y=x4y2
Dividing by xy2, we get
1y2dydx−2y1x=x3 ⋯(1)
This is a Bernoulli differential equation.
Put −2y=t⇒2y2dydx=dtdx
Equation (1) becomes
12dtdx+tx=x3
⇒dtdx+2xt=2x3
I.F. =e∫2x dx=e2lnx=elnx2=x2
So, general solution is given by
t⋅x2=∫(x2⋅2x3)dx=2∫x5dx
⇒x2t=2x66+C
⇒−2x2y=x63+C
⇒−2y=x43+Cx2
If x=1,y=−6⇒C=0
∴ The particular solution is
−2y=x43⇒y=−6x4
i.e., f(x)=−6x4
Now, f′(x)=24x−5
⇒f′(31/5)=24⋅(3)−5/5=243=8
Hence, f′(31/5)=8