The correct option is D 1−ln2
f′′(x)=−1x2−π2sin(πx)
Integrating w.r.t x on both sides,
f′(x)=1x+π2cosπxπ+C
⇒f′(x)=1x+πcosπx+C
f′(2)=12+π+C
π+12=12+π+C
⇒C=0
Hence, f′(x)=1x+πcosπx
Again , integrating w.r.t. x
⇒f(x)=ln|x|+sinπx+C1
Put x=1
0=0+0+C1
⇒C1=0
Hence, f(x)=ln|x|+sinπx
f(12)=ln|12|+1
⇒f(12)=−ln2+1
Hence, option 'D' is correct.