Let the G.P. be T1,T2,T3,T4,...T2n
Number of
terms =2n
According to the given
condition,
T1+T2+T3+...+T2n=5[T1+T3+...+T2n−1]⇒T1+T2+T3+...+T2n−5[T1+T3+...+T2n−1]=0⇒T2+T4+...+T2n=4[T1+T3+...+T2n−1]
Let the G.P. be a,ar,ar2,ar3,...
∴ar2((r2)n−1)r2−1=4×a((r2)n−1)r2−1⇒ar2=4a⇒r=±2
Thus the common ratio of the G.P.
is ±2.