wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A gas is enclosed in a cylindrical can fitted with a piston. The walls of the can and the piston are adiabatic. The initial pressure, volume and temperature of the gas are 100 kPa, 400 cm3 and 300 K, respectively. The ratio of the specific heat capacities of the gas, Cp / Cv = 1.5. Find the pressure and the temperature of the gas if it is (a) suddenly compressed (b) slowly compressed to 100 cm3.

Open in App
Solution

Initial pressure of the gas, P1 = 100 kPa
Initial volume of the gas,V1 = 400 cm3
= 400 × 10−6 m3
Initial temperature of the gas, T1 = 300 K
γ=CpCv=1.5

(a) The gas is suddenly compressed to volume, V2 = 100 cm3 .
So, this is an adiabatic process.
For an adiabatic process,
P1V1γ = P2V2γ
⇒ 105 × (400)1.5 = P2 (100)1.5
⇒ P2 = 105(4)1.5 = 800 kPa

Also,
T1Vγ−1 = T2V2γ−1
⇒ 300 × (400)1.5−1 = T2 (100)1.5−1
⇒ 300 × (400)0.5 = T2 (100)0.5
⇒ T2 = 600 K

(b) If the container is slowly compressed, the heat transfer is zero, even thought the walls are adiabatic.
Thus, the values remain same. Thus,
P2 = 800 kPa
T2 = 600 K

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Surface Tension
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon