A Gaussian message signal m(t)=e–t2 V is applied to a phase modulator. If the phase sensitivity of the modulator is kp=8000π rad/V, then the maximum frequency deviation of the resultant PM signal will be _____ kHz.
For a PM signal, Δfmax=kp2π∣∣∣dm(t)dt∣∣∣max
m(t)=e−t2V
dm(t)dt=−2t e−t2
Let, x(t)=dm(t)dt=−2t e−t2
Finding the maximum value of x(t) :
dx(t)dt=ddt(−2te−t2)=−(2−4t2)e−t2=0
2–4t2=0 ⇒t=±1√2
So, at t=1√2,∣∣∣dm(t)dt∣∣∣ will attain its maximum value.
∣∣∣dm(t)dt∣∣∣max=(2te−t2)|t=1√2=√2e−0.5
So, Δfmax=8000π2π(√2e−0.5)Hz=4√2(e−0.5) kHz=3.43 kHz