A general solution of tan2θ+cos2θ=1 is (nϵz)
tan2θ+cos2θ=1 tan2θ+1−tan2θ1+tan2θ=1 tan2θ+tan4θ+1−tan2θ=1+tan2θ tan4θ−tan2θ=0 tan2θ(tan2θ−1)=0 tanθ=0 or tanθ=±1 So, θ=nπ or 2nπ+π4