We need to add two cosine functions.
First convert them to sine functions using cosα
=sin(α+π/2), then apply
cosα+cosβ=sin(α+π2)+sin(β+π2)=2sin(α+β+π2)cos(α+β2)
=2cos(α+β2)cos(α−β2)
Letting α=kx and β=ωt, we find
ymcos(kx+ωt)+ymcos(kx−ωt)=2ymcos(kx)cos(ωt)
Nodes occur where cos(kx)=0 or kx=nπ+π/2, where n is an integer (including zero).
since k=1.0πm−1, this means x=(n+12)(1.00m).
Thus, the smallest value of x that corresponds to a node is x=0.500m(n=0).