From the given data,
n=250, ¯¯¯x=15.6, σ=√13.44n2=100, ¯¯¯x2=15, σ2=3⇒n1=150
We know that,
¯¯¯x=n1¯¯¯¯¯x1+n2¯¯¯¯¯x2n1+n2⇒15.6=150(¯¯¯¯¯x1)+100(15)250⇒¯¯¯¯¯x1=16
Using Combined Variance formula, we get
σ2=1n1+n2[n1(σ21+d21)+n2(σ22+d22)]
Where
d1=¯¯¯x−¯¯¯¯¯x1=15.6−16=−0.4d2=¯¯¯x−¯¯¯¯¯x2=15.6−15=0.6
∴13.44=1250[150(σ21+0.16)+100(9+0.36)]⇒σ21=16∴σ1=4