Given N=123, n(I)=42, n(T)=36,
n(C)=20, n(I∩T)=15, n(I∩C)=10,
n(C∩T∩I′)=4, n(I∩T∩C′)=11,
To find n(I′∩T′∩C′)
We have
4=n(C∩T∩I′)=n(C∩T)−n(C∩T∩I′)
and 11=n(I∩T∩C′)
=n(I∩T)−n(I∩T∩C′)
=15−n(I∩T∩C)
∴n(I∩T∩C)=4
Then (1) Gives 4=n(C∩T)−4
or n(C∩T)=8
Now n(I′∩T′∪C′)=n(I∪T∪C)′
by De-Morgan law
=N−n(I∪T∪C)
=N−{n(I)+n(T)+n(C)−n(I∩T)−n(T∩C)−n(C∩I)+n(I∩T∩C)}
=123−{42+36+30−15−8−10+4}=44