For the condition of rolling
v=2RωMI of the cylinder is same as that of a disc.
Mass of the cylinder: M=π((2R)2−R2)=3πR2
MI of the hollow cylinder I=Mouter(2R)22−MinnerR22=π(2R)2(2R)22−πR2R22=152πR4=52MR2
KE: K=Ktr+Krot=12MV2+12Iω2
=12MV2+12×52×MR2(V2R)2
=12MV2+516MV2
=1316MV2
=1316MV2
=x16MV2
⇒x=13