The correct option is A x2cosec2θ−y2sec2θ=1
The given ellipse is
x24+y23=1
a=2,b=√3
3=4(1−e2)
e=12
So that , ae=1
Hence , the eccentricity e1 of the hyperbola is given by
1=e1sinθ
e1=cosecθ
b2=sin2θ(cosec2θ−1)
b2=cos2θ
Hence , the Hyperbola is
x2sin2θ−y2cos2θ=1
or
x2cosec2θ−y2sec2θ=1