A hyperbola, having the transverse axis of length 3x2+4y2=12. Its equation is
A
x2sin2θ−y2cos2θ=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x2cosec2θ−y2sec2θ=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(x2+y2)sin2θ=1+y2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x2cosec2θ=x2+y2+sin2θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ax2cosec2θ−y2sec2θ=1 2A=2sinθ A=sinθ ⇒x24+y23=1(a=2,b=√3)⇒b2=a2(1−e2) 3=4(1−e2) ⇒e2=1−34=14⇒e=12 So S(ae,0)⇒S(1,0) for hyperbola foci are same Ae1=ae=1⇒(sinθ)e1=1⇒e1=cosecθ B2=A2(e21−1)=(Ae1)2−A2⇒B2=1−sin2θ=cos2θ x2A2−y2B2=1⇒x2sin2θ−y2cos2θ=1⇒x2cosec2θ−y2sec2θ=1