(a) If A = {1, 3, 4, 8, 9, 12}, B = {1, 4, 9} and C = {2, 4, 8, 10}
Find (i) A ∪ (B ∩ C) (ii) A ∩ (B ∪ C) (iii) (A ∪ B) ∩ (A ∪ C) (iv) (A ∩ B) ∪ (A ∩ C)
(b) If A = (2, 4, 6, 8, 10}, B = {1, 2, 3, 4, 5, 6} and C = (1, 3, 5, 7, 9, 11, 13}
Verify (i) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (ii) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
(iii) (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) (iv) (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)
(c) If X = {x : x is a prime number less than 12}
Y = {x : x is an even number less than 12}
Z = {x : x is an odd number less than 12}
Show that (i) union of sets of distributive over intersection of sets.
(ii) intersection of sets is distributive over union of sets.