(a) If A and B be mutualy exclusive events associated with a random experiment such that P(A) = 0.4 and P(B) = 0.5, then find :
(i) P(A∪B) (ii) P(¯¯¯¯A∪¯¯¯¯B)
(iii) P(¯¯¯¯A∪B) (iv) P(A∪¯¯¯¯B)
(b) A and B are two events such that P(A)= 0.54, P(B) = 0.69 and P(A∪B) = 0.35. Find:
(i) P(A∪B) (ii) P(¯¯¯¯A∪¯¯¯¯B)
(iii) P(A∪¯¯¯¯B) (iv) P(B∪¯¯¯¯A)
(c) Fill in the blanks in the following table :
P(A) P(B)
P(A∩B) P(A∪B)
(i) 13 15 115
(ii) 0.35
(iii) 0.5 0.35
(a) Given,
P(A) = 0.4
P(B) = 0.5
∴ A and B are mutually exclusive events, then P(A∩B)=0
Now,
(i) P(A∪B)=p(A)+P(B)−P(A∩B)
=0.4+0.5 - 0 =0.9
∴P(A∪B)=0.9
(ii) P(¯¯¯¯A∩¯¯¯¯B)=1−P(A∪B)
= 1-0.9 = 0.1
∴P(¯¯¯¯A∩¯¯¯¯B)=0.1
(iii) P(¯¯¯¯A∩B)=P(B)−P(A∩B)
= 0.5-0
∴P(¯¯¯¯A∩B)=0.5
(iv) P(A∩¯¯¯¯B)=P(A)−P(A∩B)
= 0.4-0 = 0.4
∴P(¯¯¯¯A∩B)=0.4
(b) Given,
P(A) = 0.54
P(B) = 0.69
P(A∩B)=0.35
(i) P(A∪B)=P(A)+P(B)−P(A∩B)
= 0.54 + 0.69 -0.35
= 1.23 - 0.35
∴P(A∪B)=0.88
(ii) P(¯¯¯¯A∩¯¯¯¯B)=1−P(A∪B)
= 1-0.88 = 0.12
∴P(¯¯¯¯A∩¯¯¯¯B)=0.12
(iii) P(A∩¯¯¯¯B)=1−P(A∪B)
= 0.54-0.35= 0.19
∴P(A∩¯¯¯¯B)=0.19
(iv) P(B∩¯¯¯¯A)=P(B)−P(A∩B)
= 0.69 - 0.35 = 0.34
∴P(B∩¯¯¯¯A)=0.34
(c) (i) Given,
P(A)=13,P(A∩B)=115
P(B)=15,P(A∪B)
= ∵P(A∪B)=P(A)+P(B)−P(A∩B)
= 13+15−115
= 5+3−115=8−115=715
∴P(A∪B)=715
(ii) Given,
P(A) = 0.35, P(B)=
∵P(A∪B)=P(A)+P(B)=P(A∩B)
0.6 = 0.35+ P(B) - 0.25
0.6 = 0.10 + P(B)
P(B) = 0.6 -0.1
P(B) = 0.5
(iii) Given,
P(A) = 0.5, P(B) = 0.35
P(A∩B) =
∵P(A∪B)=P(A)+P(B)−P(A∩B)
0.7 = 0.5 +0.35 - P(A∩B)
0.7 = 0.85 - P(A∩B)
P(A∩B) = 0.85 - 0.7
P(A∩B) = 0.15