(a) Since each pair has a common root, the root of the three equations be taken as α,β;β,γ and γ,α respectively.
∴ α+β=−p1,β+γ=−p2,γ+α=−p3
αβ=q1,βγ=q2,γα=q3.
The given result can be written as on adding z∑p1p2 in both sides.
(p1+p2+p3)2=4[∑p1p2−∑q1]
L.H.S.=[2(α+β+γ)]2=4(α+β+γ)2
R.H.S.=4[(α+β)(β+γ)+(β+γ)(γ+α)+(γ+α)(α+β)−(αβ+βγ+γα)]
=4[α2+β2+γ2+2αβ+2βγ+2γα]
=4[α+β+γ]2= L.H.S.
(b) Since each pair has common root, let the roots be
α,β for I; β,γ for II; and γ,α for III.
∴ α+β=−a αβ=bc
β+γ=−b, βγ=ca
γ+α=−c γα=ab
Adding and multiplying,we get
2(α+β+γ)=−(a+b+c)
∴ ∑α=−12∑a=sum
α2β2γ2=a2b2c2
∴ ααγ=abc= Product
(c) Let α be the common root of the three equations and their other roots be β,γ,δ respectively
∴ α+β=−a,αβ=12
α+γ=−b,αγ=15
α+δ=−(a+b),aδ=36
∴ (α+β)+(α+γ)=−(a+b)=α+δ
∴ α+β+γ=δ...........(1)
Again α(β+γ+δ)=12+15+36=63
or α(2δ−α)=63 by (1)
or 2αδ−α2−63 or 72−α2=63∵αδ=36
∴ α2=9∴α=3,−3
α=3⇒β=4,γ=5,δ=12
α=−3⇒β=−4,γ=−5,δ=−12
∴ a=−(α+β)=7,−7;b=−(α+γ)=8,−8