If H=⎡⎢⎣123231312⎤⎥⎦, G=⎡⎢⎣26−100−482−84⎤⎥⎦
Find 3H−12G.
[3]
(b) If 3A=⎡⎢⎣12221−2x2y⎤⎥⎦ and A⋅AT=I, then find the value of x+y.
[3]
(c) If A=[2513],B=[4−2−13] and I is Identity matrix of same order and At is the transpose of matrix A find At.B+BI.
[4]
Given H=⎡⎢⎣123231312⎤⎥⎦, G=⎡⎢⎣26−100−482−84⎤⎥⎦
3H=⎡⎢⎣3×13×23×33×23×33×13×33×13×2⎤⎥⎦=⎡⎢⎣369693936⎤⎥⎦
[1]
12G=⎡⎢⎣2÷26÷2−10÷20÷2−4÷28÷22÷2−8÷24÷2⎤⎥⎦=⎡⎢⎣13−50−241−42⎤⎥⎦
[1]
3H−12G=⎡⎢⎣2314611−1874⎤⎥⎦
[1]
(b) Given that,3A=⎡⎢⎣12221−2x2y⎤⎥⎦
⇒A=⎡⎢
⎢
⎢⎣1323232313−23x323y3⎤⎥
⎥
⎥⎦
[0.5]
∴AT=⎡⎢
⎢
⎢⎣1323x323132323−23y3⎤⎥
⎥
⎥⎦
[0.5]
AAT=I⇒⎡⎢
⎢
⎢⎣1323232313−23x323y3⎤⎥
⎥
⎥⎦⋅⎡⎢
⎢
⎢⎣1323x323132323−23y3⎤⎥
⎥
⎥⎦=⎡⎢⎣100010001⎤⎥⎦⇒⎡⎢
⎢
⎢
⎢⎣19+49+4929+29−49x9+49+2y929+29−4949+19+492x9+29−2y9x9+49+2y92x9+29−2y9x29+49+y29⎤⎥
⎥
⎥
⎥⎦=⎡⎢⎣100010001⎤⎥⎦⇒x2+y2+4=9⇒x2+y2=5 ...(1)
⇒2x+2−2y=0⇒y=x+1 ...(2)
⇒x+4+2y=0⇒x+2y=−4 ...(3)
Solving Equations (1) and (2)
x2+(x+1)2=5⇒x2+x2+2x+1=5⇒x2+x−2=0⇒x=−2,1⇒(x,y)≡(1,2),(−2,−1)
Satisfying these in Equation (3)
(−2)+2(−1)=−4(1)+2(2)≠−4
Hence, (−2,−1) satisfies.
So x+y=−3.
[2]
(c) A=[2513]
∴At=[2153]
[1]
At.B=[2153][4−2−13]
=[2×4+1×(−1)2×(−2)+1×33×4+3×(−1)5×(−2)+3×3]
=[7−117−1]
[1]
B.I=[4−2−13][1001]
=[4−2−13]
[1]
∴At.B+BI=[7−117−1]+[4−2−13]
=[11−3162]
[1]