wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

(a) If sinA=1213 and sinB=45, where π2<A<π and 0<B<π2, find the following:
(i) sin(A+B)
(ii) cos(A+B)
(b) If sinA= 35, cosB=1213, where A and B both lie in second quadrant, find the value of sin(A+B).

Open in App
Solution

(a) sinA=1213 and sinB=45
cosA=1sin2A and cosB=1sin2B
[ In the second quadrant cosθ is negative ]
cosA=1(1213)2
cosB=1(45)2
cosA=1144169
cosB=11615
cosA=25169 and
cosB=925
cosA=513 and cosB=35
Now,
sin(A+B)=sinA cosB+cosA sinB
=1213×513×45
=36652025
=1665
(ii) cos(A+B)=cosA cosBsinA sinB
=513×351213×45
=15654865
=6365
(b) We have,
sinA=35 and cosB=1213
cosA=1sin2A and sinB=1cos2B
[ In the second quadrant cosθ is negative]
cosA=1(35)2
sinB=1(1213)2
cosA=1925 and sinB=1144169
cosA=1625 and
sinB=25169
cosA=45 and sinB=513
Now,
sin(A+B)=sinA cosB+cosA sinB
35×(1213)45×513
=36652065=5665
sin(A+B)=5665


flag
Suggest Corrections
thumbs-up
17
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon