(a) If sinA=1213 and sinB=45, where π2<A<π and 0<B<π2, find the following:
(i) sin(A+B)
(ii) cos(A+B)
(b) If sinA= 35, cosB=1213, where A and B both lie in second quadrant, find the value of sin(A+B).
(a) sinA=1213 and sinB=45
∴cosA=−√1−sin2A and cosB=−√1−sin2B
[ ∵ In the second quadrant cosθ is negative ]
⇒cosA=−√1−(1213)2
cosB=√1−(45)2
⇒cosA=−√1−144169
cosB=√1−1615
⇒cosA=−√25169 and
cosB=√925
⇒cosA=−513 and cosB=35
Now,
sin(A+B)=sinA cosB+cosA sinB
=1213×−513×45
=3665−2025
=1665
(ii) cos(A+B)=cosA cosB−sinA sinB
=−513×35−1213×45
=−1565−4865
=−6365
(b) We have,
sinA=35 and cosB=−1213
∴cosA=−√1−sin2A and sinB=√1−cos2B
[ ∵ In the second quadrant cosθ is negative]
⇒cosA=−√1−(35)2
sinB=√1−(−1213)2
⇒cosA=−√1−925 and sinB=√1−144169
⇒cosA=−√1625 and
sinB=√25169
⇒cosA=−45 and sinB=513
Now,
sin(A+B)=sinA cosB+cosA sinB
35×(−1213)−45×513
=−3665−2065=−5665
∴sin(A+B)=−5665