(a) (c−a)2−4(a−b)(b−c)=0
c2+a2−2ca−4ab+4ac+4b2−4bc=0
or c2+a2−2ca+4b2−4b(c+a)=0
or (c+a)2+(2b)2−2.2b(c+a)=0
or [(c+a)−2b]2=0∴c+a−2b=0
or 2b=a+c ∴ a,b,c arein A.P>
Alternate : ∑(b−c)=0∴x=1 is a root since roots are equal, therefore both the roots are 1,1.
Hence their product.
P=1=a−bb−c∴2b=a+c
∴ a,b,c are in A.P.
(b) b2(c−a)2−4ac(b−c)(a−b)=0
or b2(c2+a2−2ac)−4ac[ab−ac−b2+bc]=0
or b2(c2+a2−2ac+4ac)=4a2c2−4abc(c+a)=0
or [b(c+a)]2+(2ac)2−2.2ac.b(c+a)=0
or [b(c+a)−2ac]2=0∴b(c+a)=2ac
or b=2aca+c
∴ b is H.M. of a and c i.e. a,b,c are in H.P.
Alternate : Here ∑a(b−c)=0
∴ x=1 is a root and since both roots are equal, they are 1,1.
∴ P=1=c(a−b)a(b−c) or b=2aca+c
∴ a,b,c are in H.P.