wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A kite is flying with the string inclined at 75o to the horizon. If the length of the string is 25m, then height of the kite is :

A
(252)(31)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(252)(3+12)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(252)(3+1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(252)(6+2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B (252)(3+12)
Let H be the height of kite $\therefore \sin { 75 }^{ 0 }=\cfrac { H }{ 25 }
$$\sin { { 75 }^{ 0 } } =\sin { \left( { 45 }^{ 0 }+{ 30 }^{ ' } \right) } \sin\ 75^o=\sin(30^o+45^o)\\=\sin { { 45 }^{ 0 } } \cos { { 30 }^{ 0 } } +\cos { { 45 }^{ 0 } } \sin { { 30 }^{ 0 }
\\=\cfrac { 1 }{ \sqrt { 2 } } \times { \sqrt { 3 } }{ 2 } +\cfrac { 1 }{ \sqrt { 2 } } \times { 1 }{ 2 } }=\cfrac { \sqrt { 3 } +1 }{ 2\sqrt { 2 } } Putvalueof\sin { { 75 }^{ 0 } } inequation1H=25\left[ \cfrac { \sqrt { 3 } +1 }{ 2\sqrt { 2 } } \right] H=\cfrac { 25 }{ 2 } \left[ \cfrac { \sqrt { 3 } +1 }{ \sqrt { 2 } } \right] $

672724_632296_ans_66eda7dee01242ff8cc489b1ce4bf5f3.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Questions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon