wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A ladder of length k rests against a wall at an angle α to the horizontal. If foot is pulled away through a distance a, so that is slides a distance b down the wall, finally making an angle β with the horizontal. Then

A
tan(α+β2)=ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tan(αβ2)=ab
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cosec(αβ2)=2ka2+b2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin(α+β)=abk2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B tan(αβ2)=ab
C cosec(αβ2)=2ka2+b2
AB=AB=k (length of ladder)

AA=a,BB=b

a=OAOA,b=OBOB.......(I)

In ΔleOAB

cosα=OAAB=OAKOAkcosα

sinα=OBAB=OBKOBksinα

In ΔleOAB

cosβ=OAAB=OAKOAkcosβ

sinβ=OBAB=OBKOBksinβ


Sub above equation in(I)

α=kcosβkcosα b=ksinαksinβ

α=k(cosβcosα) b=k(sinαksinβ)

ab=k(cosβcosα)k(sinαsinβ)

ab=cosβcosαsinαsinβ

=2.sin(β+α2)sin(α+β2)2.sin(αβ2).cos(αβ2)

ab=tan(αβ2)

a2=k2(cosβcosα)2

b2=k2(sinαsinβ)2

a2+b2=k2[cos2β+cos2α2cosαcosβ+sin2α+sin2β2sinαsinβ]

=k2[sin2α+cos2α+sin2β+cosd2β2(cosαcosβ+sinα+sinβ)]

=k2[1+12(cos(αβ))]

k2[22cos(αβ)]

=2k2[1cos(αβ)]

=2k2[1(1(12sin2(αβ2)))]

=a2+b22k2=11+2sin2(αβ2)

=a2+b22k2=2sin2(αβ2)

a2+b24k2=sin2(αβ2)

cosec2(αβ2)=1sin2(αβ2)=4k2a2+b2

cosec(αβ2)=4k2a2+b2

cosec(αβ2)=2ka2+b2

cosec(αβ2)=2ka2+b2

1430079_192901_ans_5cd029aa89e140138de847b3ca97d4df.PNG

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon