Lets form the figure,
b=BC=AB−AC=lsinα−lsinβ
a=PQ=AQ−AP=lcosβ−lcosα
⇒ab=lcosβ−lcosαlsinα−lsinβ
⇒ab=cosβ−cosαsinα−sinβ
⇒ab=2sin(α+β2)sin(α−β2)2cos(α+β2)sin(α−β2)
⇒ab=tan(α+β2)
⇒a=btan(α+β2)