A(0,3), B(−1,−2) and C(4,2) are vertices of a ΔABC. D is a point on the side BC such that BDDC=12. P is a point on AD such that AP=2√53 units. Find coordinates of P.
Open in App
Solution
We have the points B(−1,−2) and C(4,2).
Given, BD:DC=1:2.
∴ co-ordinates of D=(−2+42+1,−4+22+1)=(23,−23).
Now, AD=√(0−23)2+(3+23)2=5√53.
Given, AP=2√53.
∴PD=3√53.
So, AP:PD=2:3.
∴ co-ordinates of P is ⎛⎜
⎜⎝0+432+3,9−432+3⎞⎟
⎟⎠=(415,2315)