The correct option is
C 712A(2,4,5),B(3,5,−4)xy plane ⇒z=0
yz plane ⇒x=0
line through A & B ⇒x−21=y−41=z−5−9=t
∴ let P(t+2,t+4,−9t+5) be point of intersection of line with xy plane.
∴P=(239,419,0)
Similarly,for Q(t+2,t+4,9t+5) be point of intersection of line with yz plane ⇒t=−2.
Q(0,2,23)
(i)let P divide AB in 1:λ(a:b)
∴(239,419,0)=(2λ+3λ+1,4λ+5λ+1,5λ−4λ+1)⇒λ=45∴ab=54
(ii)let Q divide AB in λ:1(p:q)
∴(0,2,23)=(2+3λλ+1,4+5λλ+1,5−4λλ+1)⇒λ=−23∴pq=−23∴ab+pq=54−23=712