The correct option is C a(t+1t)2
Formulaused
distanceformula=√(y2−y1)2+(x2−x1)2
(x2−y2)=(x+y)(x−y)
Given
A=(at2,2at),B=(at2,−2at)
AB=√(−2at−2at)2+(at2−at2)2
=√4a2(−1t−t)2+a2(1t2−t2)2
=a√4(1t+t)2+((1t+t)(1t−t))2
=a
⎷(1t+t)2[4+(1t−t)2]
=a(1t+t)√1t2+t2+2
=a(1t+t)√(1t+t)2
=a(1t+t)2