A(α,β)=⎛⎜⎝cosαsinα0−sinαcosα000eβ⎞⎟⎠⇒[A(α,β)]−1=
A(−α,β)
A(−α,−β)
A(α,−β)
A(α,β)
A(∝,β)=⎡⎢⎣cos∝sin∝0−sin∝cos∝000eβ⎤⎥⎦A−1=⎡⎢⎣cos∝−sin∝0sin∝cos∝000e−β⎤⎥⎦=A(−∝,−β)
Using properties of determinants prove the following questions.
∣∣ ∣ ∣∣sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)∣∣ ∣ ∣∣=0
Evaluate ∣∣ ∣∣cosαcosβcos αsin β−sin α−sinβcosβ0sin αcos βsin αsin βcos α∣∣ ∣∣
If α,β are the roots of the equation ax2+bx+c=0, then the value of determinant ∣∣ ∣ ∣∣1cos(α−β)cosαcos(α−β)1cosβcosαcosβ1∣∣ ∣ ∣∣ is equal to