The correct option is
C Last two digits of
M are
6 and
1Given : A=⎡⎢⎣abcbcacab⎤⎥⎦
Trace(A)=9:a,b,c are positive integers such that ab+bc+ca=26.
A1 is adjoint of A
A2 is adjoint of A1 and so on.
Since, a+b+c=Tr(A)=9
and ab+bc+ca=26
∴(a+b+c)(ab+bc+ca)=9×26
⇒(a+b)(b+c)(c+a)−abc=9×26
⇒(a+b)(b+c)(c+a)−abc=234
|A|=a(bc−a2)+b(ac−b2)+c(ab−c2)
=abc−a3+abc−b2+abc−c3
|A|=3abc−(a3+b3+c3) .... (1)
since, a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
=(9)(a2+b2+c2−26) ....(2)
|A1|=Adj(A)=|det(A)|n−1
=|A|n−1
|A2|=Adj(A1)=[det(A1)]n−1
=|A1|n−1
|A3|=Adj(A2)=|A2|n−1
|A4|=Adj(A3)=|A3|n−1
=||A2|n−1|n−1
=|||A1|n−1|n−1|n−1
|A4|=||||A|n−1|n−1|n−1|n−1 ...(3)
∵ we know that,
a+b2+c2=(a+b+c)2−2ab−2bc−2ac
=(9)2=2(ab+bc+ac)
=81−2(26)
=81−52
a2+b2+c2=29 subtitute in (2)
⇒a3+b3+c3−3abc=9(29−26)
=9(3)
$$\Rightarrow a^3 + b^3 + c^3 - 3abc =27$ ...(4)
∴ from (1) we have
|A|=3abc−(a3+b3+c63)
⇒|A|=−(A3+b3+c3−3abc)
⇒|A|=−(27) (from (4))
∴M=|A4|=||||A|n−1|n−1|n−1|n−1 (from (3))
⇒M=|A3+1|=||||A|3−1|3−1|3−1
⇒M=|A4|=||||A|2|2|2|2
⇒M=|A4|=A16
⇒M=|A4|=|27|16
⇒M=|A4|=33×16
⇒M=|A4|=348=7.176644308×1022
∴M=348 is correct answer.