I=MI of rod about fixed point
I=M(l3)2+M[(2l3)]2+Ml2
=Ml2[(19)+(49)+1]
=Ml2⋅[149]
=[149]Ml2 (1)
also when rod is released,
loss in PE = gain in KE
hence Mg(l3)+Mg[(2l3)]+Mgl=(12)Iw2
2Mgl=(12)×[(149)]Ml2w2−−−−−from(1)
2g=(1418)lw2
hencew2=[(36g14l)]
V=rω\\ VB=(23)l⋅√[(36g14l)]
=√[(36g14l)×49l2]
=√[l⋅g⋅(1614)]
=√{(87)gl}