equation of line in intercept form is xa+yb=1 ....(1)
Since, the axes is rotated by α
Therefore, x=Xcosα−Ysinα and y=Xsinα+Ycosα
Substituting in (1), we get
Xcosα−Ysinαa+Xsinα+Ycosαb=1
⇒(cosαa−sinαb)X+(cosαb+sinαa)Y=1
Since, the intercepts of the transformed co-ordinate systems are equal.
Therefore, cosαa+sinαb=cosαb−sinαa
⇒tanα=a−ba+b
A) if a=1,b=0
Then tanα=1−01+0=1⇒α=π4
B) if a=0,b=1
Then tanα=0−10+1=−1⇒α=−π4
C) if ab=1+√31−√3
Then tanα=√3⇒α=π3
B) if a=2,b=0
Then tanα=2−02+0=1⇒α=π4