A line is a common tangent to the circle (x–3)2+y2=9 and the parabola y2=4x. If the two points of contact (a,b) and (c,d) are distinct and lie in the first quadrant, then 2(a+c) is equal to
Open in App
Solution
Circle : (x−3)2+y2=9
Parabola : y2=4x
Let common tangent equation be y=mx+am ⇒y=mx+1m ⇒m2x−my+1=0
the above line is also tangent to circle (x−3)2+y2=9
So, perpendicular distance from (3, 0) to line =3 ⇒∣∣∣3m2−0+1√m2+m4∣∣∣=3 ⇒(3m2+1)2=9(m2+m4) ⇒m=±1√3 ∴ tangent equation is y=1√3x+√3
slope shouldnot be negetive for point of contacts in first quadrent ∴m=1√3
For Parabola, point of contact is (am2,2am)≡(3,2√3)≡(c,d)
Solving Circle (x−3)2+y2=9 & line equation y=1√3x+√3 (x−3)2+(1√3x+√3)2=9 ⇒x2+9−6x+13x2+3+2x=9 ⇒43x2−4x+3=0 ⇒x=32=a ∴2(a+c)=2(32+3)=9