Distance d between two points P(a,b) and Q(c,d) is given by
d=√(a−c)2+(b−d)2
Given that :
Length of line i.e d=10
Abscissa of second point is 10
And let us assume the ordinate of second point be y
Points (2,−3) & (10,y)
Now apply distance formula
10=√(2−10)2+(−3−y)2
Squaring both sides
⇒100=(−8)2+(−3−y)2
⇒100=64+(−3−y)2
⇒100−64=(−3−y)2
⇒36=(−3−y)2
Taking square root both sides
⇒±6=(−3−y)
or ⇒±6=(3+y) (taking - sign common on both sides)
⇒±6−3=y
Taking both cases
y=+6−3=3
y=−6−3=−9