P1P2 makes an angle θ with the positive x−axis.
(x1,y1)=A(1,5)
So, the equation of the line passing through A(1,5) is
⇒ x−x1cosθ=y−y1sinθ
⇒ x−1cosθ=y−5sinθ
⇒ y−5x−1=tanθ
Let AP1=AP2=r
Then, the co-ordinates of P1 and P2 are given by
⇒ x−1cosθ=y−5sinθ=r and x−1cosθ=y−5sinθ=−r
So, the co-ordinates of P1 and P2 are 1+rcosθ, 5+rsinθ and 1−rcosθ,5−rsinθ respectively.
Clearly, P1 and P2 lie on 5x−y−4=0 and 3x+4y−4=0 respectively.
∴ 5(1+rcosθ)−5−rsinθ−4=0 and
3(1−rcosθ)+4(5−rsinθ)−4=0
⇒ r=45cosθ−sinθ and r=193cosθ+4sinθ
⇒ 45cosθ−sinθ=193cosθ+4sinθ
⇒ 95cosθ−19sinθ=12cosθ+16sinθ
⇒ 83cosθ=35sinθ
⇒ sinθcosθ=8335
Thus, the equation of the required line is
y−5x−1=tanθ
⇒ y−5x−1=8335
⇒ 35y−175=83−83
⇒ 83x−35y+92=0
∴ The equation of line is 83x−35y+92=0