In the first coordinate system,
xa+yb=1⟹(1)
x′p+y′q=1
x′=xcosθ+ysinθ
y′=−xsinθ+ycosθ
so,x(cosθp−sinθq)+y(sinθp−cosθq)=1
comparing with (1),
⎛⎜ ⎜ ⎜⎝cosθp−sinθqq⎞⎟ ⎟ ⎟⎠1a=⎛⎜ ⎜ ⎜⎝sinθp−cosθqq⎞⎟ ⎟ ⎟⎠1b=11
cosθp−sinθq=1a⟹(2)
sinθp−cosθq=1b⟹(3)
Squaring and adding eqn 2 and 3
1p2+1q2=1a2+1b2