Let side of cube be 'a'
Dr's of a diagonal OG = a ,a ,a
Dr's of a diagonal CD = a ,a , - a
Dr's of a diagonal BE = a , - a ,a
Dr's of a diagonal AF = - a ,a ,a
nowDc′sofdiagonalOG=(1√3,1√3,1√3)
nowDc′sofdiagonalCD=(1√3,1√3,−1√3)
nowDc′sofdiagonalBE=(1√3,−1√3,1√3)
nowDc′sofdiagonalAF=(−1√3,1√3,1√3)
lets dcs of given line which is making
θ1,θ2,θ3,θ4, with the diagonal be l, m, n now applying between two angle
so
cosθ1=l(1√3)+m(1√3)+n(1√3)→(1)cosθ2=l(1√3)−m(1√3)+n(1√3)→(2)cosθ3=l(1√3)+m(1√3)−n(1√3)→(3)cosθ4=−l(1√3)+m(1√3)+n(1√3)→(4)
squaring and adding equation (1), (2) , (3) (4)
cos2θ1+cos2θ2+cos2θ3+cos2θ4=
13⎡⎣l2+m2+n2+2lm+2mn+2ln+l2+m2+n2+2lm−2mn−2ln+l2+m2+n2−2lm−2mn+2ln+l2+m2+n2−2lm+2mn−2ln⎤⎦
13[4(l2+m2+n2)]
13(4)→(l2+m2+n2)=1
43
cos2θ1+cos2θ2+cos2θ3+cos2θ4=43