wiz-icon
MyQuestionIcon
MyQuestionIcon
10
You visited us 10 times! Enjoying our articles? Unlock Full Access!
Question

A line makes angles α,β,γ and δ with the diagonals of a cube, prove the cos2α+cos2β+cos2γ+cos2δ=43

Open in App
Solution


Let a be the length of an edge of the cube and let one corner be at the origin.
Clearly, OP, AR, BS and CQ are the diagonals of the cube.
The direction ration of OP, AR, BS and CQ are:
a-0, a-0, a-0 i.e.a,a,a
0-a, a-0, a-0 i.e.-a,a,a
a-0, 0-a, a-0 i.e.a, -a,a
and a-0, 0-a i.e. a,a,-a
Let the direction ratios of a line be proportional to I, m, n.
Suppose this line makes angle α,γ,γ and δ with OP,AR, BS and CQ respectively.
Now α is the angle between OP and the line whose DR's are proportional to l,m,n.
cosα=a.l+a.m+a.na2+a2+a2.l2+m2+n2cosα=l+m+n3l2+m2+n2........(1)
Now β is the angle between AR and the line whose DR's are proportional to l,m,n.
cosα=a.l+a.m+a.na2+a2+a2.l2+m2+n2cosα=l+m+n3l2+m2+n2........(2)
Similarly,
cosγ=lm+n3l2+m2+n2.........(3)cosδ=l+mn3l2+m2+n2........(4)
Therefore from eq(1), eq(2), eq(3) and eq(4):
cos2α+cos2β+cos2γ+cos2δ=(l+m+n)23(l2+m2+n2)+(l+m+n)23(l2+m2+n2)+(lm+n)23(l2+m2+n2)+(l+mn)23(l2+m2+n2)
=13(l2+m2+n2)[(l+m+n)2+(l+m+n)2+(lm+n)2+(l+mn)2]=13(l2+m2+n2){4(l2+m2+n2)}=43

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon