cosα=l+m+n√3
cosβ=l+m−n√3
cosγ=l−m+n√3
cosδ=−l+m+n√3 [L2+M2+N2−1]
cos2α+cos2β+cos2γ+cos2γ
=13+(l+m+n)2+(l+m−n)2+(l−m+n)2+(−l+m−n)
=13(4(l2+m2+n2))=x3
43=x3(x=4)
A line makes angles α,β,γ,δ with the four diagonals of a cube, prove that
cos2α+cos2β+cos2γ+cos2δ=43