The correct options are
A −43 B 43Let a be the length of an edge of the cube and one of the end is at origin.
Clearly, OP,AR,BS and CQ are the diagonals of the cube.
The direction ratios of OP,AR,BS and CQ are:
a−0,a−0,a−0 i.e.a,a,a
0−a,a−0,a−0 i.e.−a,a,a
a−0,0−a,a−0 i.e.a,−a,a
and a−0,a−0,0−a i.e,a,a,−a
Let the direction ratios of a line be proportional to l,m,n
Suppose this line makes angle α,β,γ and δ with OP,AR,BS and CQ respectively.
Now α is the angle between OP and the line whose direction ratios are proportional to l,m,n
∴ cosα=a⋅l+a⋅m+a⋅n√a2+a2+a2√l2+m2+n2
⟹cosα=l+m+n√3√l2+m2+n2 ....... (1)
Now β is the angle between AR and the line whose directional ratios are proportional to l,m,n
∴cosβ=−a⋅l+a⋅m+a⋅n√(−a)2+a2+a2√l2+m2+n2
⟹cosβ=−l+m+n√3√l2+m2+n2 ..... (2)
Similarly,
cosγ=l−m+n√3√l2+m2+n2 ........... (3)
and cosδ=l+m−n√3√l2+m2+n2 ....... (4)
∴ from (1),(2),(3) and (4) we have
∑rϵ{α,β,γ,δ}cos2(r)
=cos2α+cos2β+cos2γ+cos2δ
=(l+m+n)23(l2+m2+n2)+(−l+m+n)23(l2+m2+n2)+(l−m+n)23(l2+m2+n2)+(l+m−n)23(l2+m2+n2)
=(l+m+n)2+(−l+m+n)2+(l−m+n)2+(l+m−n)23(l+m+n)2
=4(l+m+n)2(l+m+n)2=43