Let a be the length of na edge of the cube and let one corner be at origin.
Clearly OP,AR,BSandCQ are the diagonals of the cube.
The direction ratio of OP,AR,BSandCQ
a−0,a−0,a−0i.e a,a,a
0−a,a−0,a−0i.e −a,a,a
a−0,0−a,a−0i.e a,−a,a
and a−0,a−0,0−ai.e a,a,−a
Let the ratio of a line be proportional to l,m,n
Suppose this line makes angle α,β,γ,δ with OP,AR,BS,CQ respectively
Now α is the angle between OP and the line whose direction ratio,s are proportional to l,m,n
∴cosα=a⋅l+a⋅m+a⋅n√a2+a2+a2⋅√l2+m2+n2
⇒cosα=l+m+n√3⋅√l2+m2+n2..........(1)
Now β is the angle between OP and the line whose direction ratio,s are proportional to l,m,n
∴cosβ=−a⋅l+a⋅m+a⋅n√a2+a2+a2⋅√l2+m2+n2
⇒cosβ=−l+m+n√3⋅√l2+m2+n2..........(2)
Now γ is the angle between OP and the line whose direction ratio,s are proportional to l,m,n
∴cosγ=a⋅l−a⋅m+a⋅n√a2+a2+a2⋅√l2+m2+n2
⇒cosγ=l−m+n√3⋅√l2+m2+n2..........(3)
Now δ is the angle between OP and the line whose direction ratio,s are proportional to l,m,n
∴cosδ=a⋅l+a⋅m−a⋅n√a2+a2+a2⋅√l2+m2+n2
⇒cosδ=l+m−n√3⋅√l2+m2+n2..........(4)
Therefore from squaring and adding (1),(2),(3) and (4)
cos2α+cos2β+cos2γ+cos2δ
=(l+m+n)23(l2+m2+n2)+(−l+m+n)23(l2+m2+n2)+(l−m+n)23(l2+m2+n2)+(l+m−n)23(l2+m2+n2)
=13(l2+m2+n2)[(l+m+n)2+(−l+m+n)2+(l−m+n)2+(l+m−n)2]
=13(l2+m2+n2)4[(l2+m2+n2)]
=43