A line parallel to y=√3x passes through Q(2,3) and intersects the line 2x+4y−27=0 at P. If PQ=r, then the value of r2+2r+9 is equal to
Open in App
Solution
Given line : y=√3x⇒tanθ=√3⇒θ=60∘ ∴P≡(2+rcos60∘,3+rsin60∘)≡(2+r2,3+√3r2) P lies on the line 2x+4y−27=0 ⇒2(2+r2)+4(3+√3r2)=27 r=112√3+1=2√3−1 ∴r+1=2√3⇒r2+2r+1=12 ⇒r2+2r+9=20