Line L is passing through point =(2^i−^j+3^k)
If L1⇒→r=(^i+^j−^k)+λ(2^i−2^j+^k)
L2⇒→r=(2^i−^j−3^k)+μ(^i+2^j+2^k)
Given that line is perpendicular to L1 and L2
Let the line L =(a1,a2,a3)
The equation of L in vector form ⇒→r=(2^i−^j−3^k)+p(a1^i+a2^j+a3^k)
p is any constant.
So by condition that L is perpendicular to L1
2a1−2a2+a3=0--- (1)
L⊥L2
So, a1+2a2+2a3=0--- (2)
Solve (1) and (2)
3a1+3a3=0
⇒a3=−a1
Put it in (2)
a1+2a2−2a1=0
a2=a12
So, L=(a1,a12,−a1)
So we can say DR of L=(1,12,−1)
So equation of L in vector form:
→r=(2^i−^j+3^k)+k(^i−^j2−^k)
Cartesian form is x−21=y+112=z−3−1.