Equation of the line through P(2,3) is x−2cosθ=y−3sinθ(θ=30∘)
If PA=r1,PB=r2 then r1,r2 are the roots of the equation .
(2+rcosθ)2−2(2+rcosθ)(3+rsinθ)−(3+rsinθ)2=0
⇒r2(cos2θ−sin2θ)−2r(cosθ+5sinθ)−17=0
So a=PA⋅PB=r1r2=−17cos2θ−sin2θ=17(√3+1)
7(a−17)2=7×289×3=6069