The correct option is C 3x+2y=xy
Let the equation be xa+yb=1
Since, it passes through (4,6)
⇒4a+6b=1...(i)
The line cuts the axes at (a,0) and (0,b).
Let P(h.k) be the midpoint so
h=a2 , k=b2⇒a=2h, b=2k
Substituting the values of a,b in equation (i)
42h+62k=1
⇒4k+6h=2hk
⇒3h+2k=hk
So, locus is 3x+2y=xy