Let →r=a+λ→b
=4^i+2^j+2^k+λ (2^i+3^j+6^k)
=(4+2λ)^i+(2+3λ)^j+(2+6λ)^k
Let L be the foot of the perpendicular
∴ Position vector of L is:
(2λ+4)^i+(3λ+2)^j+(6λ+2)^k
−−→PL=(2λ+4−1)^i+(3λ+2−2)^j+(6λ+2−3)^k
=(2λ+3)^i+3λ^j+(6λ−1)^k
−−→PL.→b=2(2λ+3)+3(3λ)+6(6λ−1)=0
⇒4λ+6+9λ+36λ−6=0
⇒49λ=0
⇒λ=0
Thus, −−→PL=3^i−^k
Length of the perpendicular,
∣∣∣−−→PL∣∣∣=√(3)2+(−1)2=√10 units