Any line through A(−5,−4) is
y+4=tanθ(x+5)
or x+5cosθ=y+4sinθ=r1=r2=r3
for B C D
B,C,D lie on the given lines respectively, where
r1=AB,r2=AC=r3=AD.
r1=−ax1+by1+cacosθ+bsinθ
for B which lies on x+3y+2=0
AB=1(−5)+3(−4)+2cosθ+3sinθ=15cosθ+3sinθ
or 15AB=cosθ+3sinθ.
Similarly 10AC=2cosθ+sinθ
and 6AD=cosθ−sinθ.
Hence from the given relation
(cosθ+3sinθ)2+(2cosθ+sinθ)2=(cosθ−sinθ)2
or 4cos2θ+12sinθcosθ+9sin2θ=0
or (2cosθ+3sinθ)2=0∴tanθ=−2/3
Hence from (1), the equation of the line through A is
y+4=−23(x+5)
or 2x+3y+22=0.