The correct option is A 4x+3y−36=0
Let inclination of line passing through point (3,4) be θ
So, parametric coordinates of any point on this line will be (3+rcosθ,4+rsinθ)
Substituting this in y=8, we get PL=4sinθ
Substituting this in x=6 we get PM=3cosθ
Let locus of Q be (h,k)=(3+rcosθ,4+rsinθ),r=PQ
1PQ=1PL+1PM
⇒1PQ=sinθ4+cosθ3⇒12=3rsinθ+4rcosθ
12=3(k−4)+4(h−3)
⇒3k−12+4h−12−12=0
∴ required locus equaton is 4x+3y−36=0